Actin-facilitated assembly of smooth muscle myosin induces formation of actomyosin fibrils
نویسندگان
چکیده
To identify regulatory mechanisms potentially involved in formation of actomyosin structures in smooth muscle cells, the influence of F-actin on smooth muscle myosin assembly was examined. In physiologically relevant buffers, AMPPNP binding to myosin caused transition to the soluble 10S myosin conformation due to trapping of nucleotide at the active sites. The resulting 10S myosin-AMPPNP complex was highly stable and thick filament assembly was suppressed. However, upon addition to F-actin, myosin readily assembled to form thick filaments. Furthermore, myosin assembly caused rearrangement of actin filament networks into actomyosin fibers composed of coaligned F-actin and myosin thick filaments. Severin-induced fragmentation of actin in actomyosin fibers resulted in immediate disassembly of myosin thick filaments, demonstrating that actin filaments were indispensable for mediating myosin assembly in the presence of AMPPNP. Actomyosin fibers also formed after addition of F-actin to nonphosphorylated 10S myosin monomers containing the products of ATP hydrolysis trapped at the active site. The resulting fibers were rapidly disassembled after addition of millimolar MgATP and consequent transition of myosin to the soluble 10S state. However, reassembly of myosin filaments in the presence of MgATP and F-actin could be induced by phosphorylation of myosin P-light chains, causing regeneration of actomyosin fiber bundles. The results indicate that actomyosin fibers can be spontaneously formed by F-actin-mediated assembly of smooth muscle myosin. Moreover, induction of actomyosin fibers by myosin light chain phosphorylation in the presence of actin filament networks provides a plausible hypothesis for contractile fiber assembly in situ.
منابع مشابه
A comparison of the effects of calponin on smooth and skeletal muscle actomyosin systems in the presence and absence of caldesmon.
Thiosphosphorylated smooth muscle myosin and skeletal muscle myosin, both of which express Ca(2+)-independent actin-activated MgATPase activity, were used to examine the functional effects of calponin and caldesmon separately and together. Separately, calponin and caldesmon inhibited the actin-activated MgATPase activities of thiophosphorylated smooth muscle myosin and skeletal muscle myosin, c...
متن کاملAgonist-induced association of tropomyosin with protein kinase Calpha in colonic smooth muscle.
Smooth muscle contraction regulated by myosin light chain phosphorylation is also regulated at the thin-filament level. Tropomyosin, a thin-filament regulatory protein, regulates contraction by modulating actin-myosin interactions. Present investigation shows that acetylcholine induces PKC-mediated and calcium-dependent phosphorylation of tropomyosin in colonic smooth muscle cells. Our data als...
متن کاملCaldesmon, a novel regulatory protein in smooth muscle and nonmuscle actomyosin systems.
Caldesmon is a major calmodulinand actin-binding protein found in smooth muscle and nonmuscle cells (Ref. 1, and reviewed in Ref. 2). Current studies suggest a vital role for this protein in the regulation of smooth muscle and nonmuscle contraction. The actomyosin system, which converts the chemical energy of ATP into mechanical force, is the molecular basis for contraction of smooth muscle and...
متن کاملMyosin associated with the surfaces of organelles, vegetative nuclei and generative cells in angiosperm pollen grains and tubes
Myosin, detected by immunofluorescence using an antibody to bovine skeletal and smooth muscle myosin, has been localised on individual identifiable organelles from the grasses Alopecurus pratensis and Secale cereale, and on the surfaces of vegetative nuclei and generative cells from pollen and pollen tubes of Hyacinthus orientalis and Helleborus foetidus. Taken in conjunction with recent eviden...
متن کاملActomyosin Transports Microtubules and Microtubules Control Actomyosin Recruitment during Xenopus Oocyte Wound Healing
BACKGROUND Interactions between microtubules and actin filaments (F-actin) are critical for cellular motility processes ranging from directed cell locomotion to cytokinesis. However, the cellular bases of these interactions remain poorly understood. We have analyzed the role of microtubules in generation of a contractile array comprised of F-actin and myosin-2 that forms around wounds made in X...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 117 شماره
صفحات -
تاریخ انتشار 1992